first_img Email Why modern humans have round heads Neanderthal skulls (left) are elongated from front to back like a football. Modern human neonates (right) and infants (right, inner images) also have somewhat elongated skulls, but by the time they reach adulthood, their heads have rounded out into a basketball-like shape. PHILIPP GUNZ/CC BY-NC-ND Ever since researchers first got a good look at a Neanderthal skull in the 1860s, they were struck by its strange shape: stretched from front to back like a football rather than round like a basketball, as in living people. But why our heads and those of our ice age cousins looked different remained a mystery.Now, researchers have found an ingenious way to identify genes that help explain the contrast. By analyzing traces of Neanderthal DNA that linger in Europeans from their ancestors’ trysts, researchers have identified two Neanderthal gene variants linked to slightly less globular head shape in living people, the team reports this week in Current Biology. The genes also influence brain organization, offering a clue to how evolution acting on the brain might have reshaped the skull. This “very important study” pinpoints genes that have a “direct effect on brain shape and, presumably, brain function in humans today,” says paleoanthropologist Chris Stringer of the Natural History Museum in London, who was not a part of the work.Cradle a newborn and you’ll see that infants start life with elongated skulls, somewhat like Neanderthals. It’s only when the modern human brain nearly doubles in size in the first year of life that the skull becomes globular, says paleoanthropologist Philipp Gunz of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He and his colleagues analyzed computerized tomography scans of modern human and Neanderthal skulls to develop a “globularity index” of human brains. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwecenter_img By Ann GibbonsDec. 13, 2018 , 11:00 AM To explore the underlying differences in brain tissue, they applied that index to MRI scans from 4468 people of European ancestry whose DNA had been genotyped. The team identified two Neanderthal DNA fragments that were correlated with slightly less globular heads. These DNA fragments affect the expression of two genes: UBR4, which regulates the development of neurons, and PHLPP1, which affects the development of myelin sheaths that insulate axons, or projections of neurons.The Neanderthal variants may lower URB4 expression in the basal ganglia and also lead to less myelination of axons in the cerebellum, a structure at the back of the brain. This could contribute to subtle differences in neuronal connectivity and how the cerebellum regulates motor skills and speech, says senior author Simon Fisher of the Max Planck Institute for Psycholinguistics in Nijmegen, the Netherlands. But any effects of the Neanderthal genes in living people would be slight because so many genes shape the brain.Tying Neanderthal DNA to brain scans in living people is an “innovative and exciting approach” because “soft tissue in the brain is impossible to access from the fossil record,” says anthropologist Katerina Harvati of the University of Tübingen in Germany. She’d like to see the findings confirmed in more people.Indeed, Gunz and Fisher plan to delve into the UK Biobank, a giant database of British people’s health records and DNA. They hope to use Biobank brain scans to find more genes and to explore how Neanderthal brains would have functioned. “The Neanderthal DNA that remains in us can help us think about what their brains were like,” says geneticist Tony Capra of Vanderbilt University in Nashville.Scans of skulls show modern human infants start out with elongated heads—somewhat like Neanderthals—but they round out in adulthood. Click to view the privacy policy. Required fields are indicated by an asterisk (*) Sign up for our daily newsletter Get more great content like this delivered right to you! Countrylast_img

Leave a Reply

Your email address will not be published. Required fields are marked *